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1 Introduction1

Hybrid Electric Vehicles (HEVs) have a history dating back much farther than most people would2

expect. The first HEV was produced in 1899 by Ferdinand Porsche [7]. However, the demand for3

HEVs shrunk when the automobile assembly line in 1904 meant that gas-powered cars could be4

produced much faster and for a lower price. Research surrounding HEVs spiked after the Arab oil5

embargo of 1973 [7], and the Toyota Prius was the first HEV vehicle to truly be successful in a6

primarily gas-powered market. Recently, acknowledge of the climate crisis, referred to as Climate7

Change, has encouraged automobile producers and researchers alike to find ways to reduce the8

burning of fossil fuels, something that is thought to be a primary contributor to Climate Change. In9

order to get consumers to switch to the cleaner automobile alternative though, HEVs need to have10

comparable performance to the more common gas-powered car and be reasonably priced. The solve11

the issues of performance, several researchers have looked into the possibility of using machine12

learning to create an effective energy management strategy between the gas and electric components13

of an HEV. In optimizing this energy strategy, gas use can be reduced and overall performance of14

the HEV can be improved. The goal of this survey is to recognize leaders in this area of research,15

compare their approaches, and ultimately formulate a recommendation for future work based on the16

findings of this survey.17

2 Field-specific terminology18

Acronym Term Meaning
ECMS Equivalent Consumption Minimization Strategy heuristic method for optimization
AECMS Adaptive ECMS ECMS that has updating parameters

ITS Intelligent Transportation Systems technology that lets users make smarter use of transporta-
tion

HEV Hybrid Electric Vehicle vehicle that is powered by electric and chemical energy
Engine transients the ON/OFF cycles of the engine’s motor

V2V Vehicle to Vehicle communication for vehicle speed, etc.
V2I Vehicle to Infrastructure communication of lane marking, signs, etc.
ICE Internal Combustion Engine traditional method of vehicle powering
EM Electric Motors powering of vehicle through electrical energy

Powertrain control the system for managing the engine’s ignition system
DP Dynamic Programming computationally intense optimization method

MPC Model Predictive Control method of process control that satisfies constraints while
taking the future into account

SOC State of Charge charge of a battery relative to its capacity
Driving cycle the speed of a vehicle versus time
Prediction horizon how far into the future the model can make predictions

PHEV Plug-in Hybrid Electric Vehicle HEV that can be recharged with an external power source
EMS Energy Management System same idea as Powertrain control
AER All Electric Range how far a car can go only on electric power
CS Charge Sustaining SOC is maintained on average at a certain level
CD Charge Depleting SOC depletes because power solely comes from the EM

DMPC Direct Model Predictive Control Method that uses long prediction horizons and is not com-
putationally intense
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3 Research Directions19

In surveying papers for this report, two main directions for research became clear, each with its20

own advantages. The first direction was to focus on an offline strategy, which is what Keyser and21

Crevecoeur [1] did. For an offline strategy, emphasis is placed on maximizing the potential of each22

of the mechanical parts of the system through the application of physics to create an optimization23

problem. Figure 1 serves as an example of such an approach. The second direction, which the24

majority of the papers fell under, is implementing a real-time strategy. Real-time strategies tend to25

put more emphasis on things that could effect driving in the present- a person’s driving behavior,26

current driving conditions, or predicting future driving frames based on one that just passed. Many27

of the papers that went with a real-time strategy employed the use of driving pattern recognition in28

some form, as shown in Figure 2.

Figure 1: Overview of power flows in a drive train [1]
29

Figure 2: Real-time management of mode transition [3]

4 Research Challenges30

A lot of the challenges in this research domain are rooted in the battle between optimal performance31

and real-life useability. For example, Denis, Dubois, Dube and Desrochers [3] used Dynamic32

Programming [DP] as the foundation of their machine learning approach, because DP can produce33

very fuel-efficient results but it cannot be used in real-time. This is due to the fact that DP calculations34

can take hours for a good computer, hence DP has a very high computational complexity. In addition,35

there are several methods of powertrain control that can produce optimal results due rely on knowing36

the full drive cycle (distance, speeds, etc.) ahead of time, which is not realistic. The researchers this37

paper surveys have each found a unique way of overcoming this hurdle with a different machine38

learning technique. While these techniques do not require the full drive cycle to be known, they do39

all require knowing the road grade (incline) and some degree of knowing the driving speed in order40

to produce good results.41

5 Survey of Research Papers42

Kazemi, Fallah, Nix, and Wayne [4] had their research published in “IEEE Transactions On Intelligent43

Vehicles”, Vol. 2, No.2, June 2017. Their approach consisted of using PECMS to form three similar44
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methods to be compared with each other. The underlying math of which is made up of a Hamiltonian45

function, an equivalent factor, modification factor, variable factors, and a cost function. There is46

also an idealized model proposed using a forward-facing quasi-static method, static maps, and a PI47

controller for updating the equivalent factor. One of these methods is pictured in Figure 3. Simulations48

are used to prove the effectiveness of the models. The simulations are based on a high-fidelity model49

of a hybridized Chevrolet Camaro. There were three scenarios simulated with the high-fidelity model50

using dynamometer driving schedules developed by the US EPA- urban(UDDS), highway(HWFET),51

and high acceleration(US06). Additionally, the predictive model was tested with a real-world scenario52

from the Model Deployment dataset. The results of this team’s research is compared to ECMS and53

ACEMS methods. The advantage over ECMS is that they do not need to know the full drive cycle54

to choose the equivalent factor and hence can update in real-time. The advantage over ACEMS is55

that PECMS was shown through simulations to decrease the number of engine ON/OFF cycles and56

improve fuel economy. They also are able to reduce computational complexity with heir model,57

which allows calculations as fast as every 15 seconds.58

Figure 3: Schematic of method 3 [4]

59

Denis, Dubois, Dube and Desrochers [3] had their work in the “International Journal of Intelligent60

Transportation Systems Research”, Volume 12, September 2014. The machine learning strategy is61

built with a DP foundation, from which a Genetic Algorithm is built upon for real-time calculations.62

K-Nearest Neighbor with 20 neighbors and the Mahalanobis distance is then used as a driving pattern63

recognition module for real-time analysis based on a past frame of the current driving cycle. To select64

the length of the frame and perform model validation K-fold cross validation is used. Simulations65

were done for many cases to validate the model. However, the main focus of the paper is the real-life66

deployment test done with a three-wheel PHEV in urban and freeway settings. In comparison to a67

straight rule-based strategy, this group’s blended strategy is able to minimize fuel consumption much68

more efficiently.69

Keyser and Crevecoeur [1] presented their research as part of the 2019 IEEE/ASME International70

Conference on Advanced Intelligent Mechatronics Hong Kong, China, July 8-12, 2019. This research71

uses an offline power-split optimization strategy built through Q-Learning, a Markov Transition72

Model, and the Bellman Optimality Principle. They also test an extension of their model by adding a73

value function. This work is a continuation of their previous work [2], which they use as justification74

for their use of a dual-drive system and origin of a lot of their parameters and underlying dynamic75

models. This paper demonstrates performance with simulations that draw from a database of real-76

world GPS data. This paper compares the performance of their model with DP, for which their77

model is shown to be within %1 of the optimal value with a much lower computational demand.78

Additionally, their model is compared to standard DMPC strategies without Q-learning, for which79

their model showed lower energy consumption per kilo-watt-hour.80

Shen, Lim, and Shi [6] presented at International Conference on Machine Learning and Cybernetics81

(ICMLC), Kobe, Japan, in 2019. Their Energy Management System is built using Predictive State82

Representation (PSR) by learning past driver’s driving behavior. The spectral learning algorithm83

was used for the learning component. A matrix of parameters is formed, and Singular Value84

Decomposition (SVD) is performed on it. A fuel-cell hybrid vehicle was used for real life tests around85

a campus. These routes are pictured in Figure 4. Various routes were taken and repeated for testing.86

This is one of the few truly real-life tests and the results are impressive. Tests showed that the PSR87

model had better performance with less predictive error than a Markov-chain based prediction model.88

Comparisons between PSR and the Markov-chain model are shown in Figure 5. This is thought to be89
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the case because this group’s model takes the driver’s driving behavior into account.90

Figure 4: Driving experiments for model training and performance verification [6]

91

Figure 5: Performance comparison between models, driving route B [6]

Oncken and Chen [5] had their research in “IEEE Transactions on Vehicular Technology”, vol.92

69, no. 8., 2020. In terms of the model, Non-linear MPC (NMPC) is used for optimization of the93

powertrain torque split and engine speed. A separate implementation method of NMPC is used for94

each mode of the PHEV. The model has been tested in simulations built on real-world driving cycle95

data, and also tested in real driving tests with an MTU test vehicle. Their model implementation96

showed a 1-4% of energy savings in comparison to the PHEV’s baseline energy usage. They compare97

themselves to EMCS, demonstrating that their performance is better because of the added Connected98

and Automated Vehicle (CAV) technology to improve predictions99

100

6 Conclusion101

In conclusion, there were two main directions of research: offline and real-time, with real-time102

solutions being the more popular option with a focus on road conditions and driving patterns dictating103

the optimization of the Energy Management System. However, a number of different machine104

learning techniques were used including Q-learning, KNN, and Singular Value Decomposition. In105

surveying all of these methods, they all seem to have fairly similar high-efficiency results. However,106

the biggest differentiate between them is how much information the optimization methods were107

supplied and how many assumptions were made. None of the research surveyed here discussed tests108

on inclines or heavy traffic. However, Oncken and Chen [5] did experiment with incorporating CAV109
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technology, which could allow for those more complex factors to be taken into consideration. This110

brings me to my recommendation for future researches. As HEV and CAV technology advances,111

emphasis should be placed on testing the two together along with a blended machine learning strategy112

where the benefits of computationally complex calculations be done when offline and be supplemented113

with faster real-time calculations while driving. In this way we combine an increase of information114

with the benefits of both research directions. With the gaining popularity of HEVs we are sure to see115

great advances in this field in the future.116
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