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Abstract

This project is a literature survey of low-hardware cost Spiking Neural Networks as
applied to classification networks, learning algorithms, and hardware acceleration.
Spiking Neural Networks are relatively immature types of neural networks that are
more closely representative of the neurons and synapses in the mammalian brain
than typical Artificial Neural Networks. This similarity presents potential orders
of magnitude power efficiency benefits. A variety of neural models, encoding
schemes, and network structures are currently being studied with success similar to
that of typical artificial neural networks and vast increases in power efficiency.

1 Contributions

All analysis, synthesis, and writing is my own. This past semester I participated in a partially
overlapping research effort with the MICS lab at Virginia Tech and some of the referenced papers
were found by other students and then shared with me. That project was more directed toward Field
Programmable Gate Array implementations of spiking neural network acceleration hardware.

2 Motivation and Introduction

The growing prevalence of practical applications for neural networks and the increasing complexity
of those networks is outpacing the increases in the computational devices used to train and run them.
Most existing neural networks rely on the propagation of values between a large number of nodes
and relatively expensive computation for each node. Using general purpose computing devices is
no longer feasible, or will soon not be feasible. Much of the existing neural network computation is
done with specialized accelerators such as consumer graphics cards and specialized silicon in the
new apple chips. Neural networks running on these accelerators are pushing the boundaries of what
is possible with Von-Neuamann style computation and the limitations of accessing memory. [Bouvier
et al.|2019] Spiking, or event based, Neural Networks (SNNs) show potential to be much more power
efficient and theoretically match the computational abilities of ANNSs. [Maas|1997]]

Derived from the interactions between human neurons and synapses, SNNs aim to accomplish the
power efficiency observed in the brain. The large amount of computation done by the human brain
consumes approximately twenty watts compared to the tens of thousands of watts required for the
best hardware we have developed. These power efficiency gains can only be realised on specialised
hardware which will be discussed later. As with much of machine learning, development of the
theory has outpaced the development of the hardware and thus SNNs are often developed and trained
with software simulation. SNNs are explored in a shared realm between computational neuroscience
looking for insights into the brain and computer science looking for a practically applicable model.

This paper has been partially constrained to literature concerned with the recent developments of
SNNs that handle classification tasks. Special attention was given to neural primitives that are
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biologically-plausible and have known low cost hardware implementation. Further, for ease of
comparison among papers, focus was placed on papers concerning the common classification task of
the MNIST digit classification data-set.

3 Spiking Neural Network Background

3.1 General

Spiking Neural Networks(SNNs) are a form of Artificial Neural Network (ANN) that uses spikes, or
impulses of a single bit, to send information between neurons. This means of sending information is
thought to be more similar to the signaling of the brain and propagation of voltage through synapses.
Further, the spikes are thought to partially explain the difference in power efficiency between human
brains and Von-Neumann computers. [DeBole et al.[2019] [Bouvier et al.[2019]

3.2 Encoding

To use a SNN on most standard data-set and sensor inputs, the input values must be encoded from
its original format to spikes by an input neuron. The two general techniques used for this encoding
are rate-based, and temporal encoding. Neurons with rate based encoding create a spike train(series
of spikes) with a density(frequency of spikes) proportional to the intensity of the input. Temporal
encoding relates the intensity of the input to the time in which a single spike is sent from the input
neuron. Rate-based encoding is more common in the literature while temporal encoding is thought to
be more brain like and power efficient.[Panda et al.[2017]] With fewer spikes there are fewer events
and less computation has to occur. [P et al.|2020]] A visual comparison of the two techniques is shown
below.

Rate Encoding Temporal Encoding

Figure 1: Encoding Techniques

3.3 Neural Models

Neurons or neural primitives, in the network are designed to mirror the functionality of human
neurons. They have a membrane potential that is defined as a differential equation dependent on the
current potential and input from the synapses connected to it. Neuroscientists have created many
equations to enable neural primitives that emulate experimental findings. Integrate and Fire(IF) and
Leaky Integrate and Fire(LIF) are the simple neural models that are most common in the computing
literature. [Bouvier et al.|[2019] Both of those algorithms have a membrane potential that stores
that state of the the neural unit and a threshold. At that threshold the neural unit spikes and resets.
Burkitt| [2006] This membrane potential is increased by the synaptic weight associated with the firing
or spiking of an input neuron. LIF extends the IF model with a leak rate that is a time dependent
reduction in the membrane potential proportional to the difference of its current value and its resting
value. These models lose some of the complexity associated with more advanced models but have
produced networks with better classification accuracy. [Ali Samadzadeh/[2020]



Formally, the standard LIF model is defined by:
v _
dt

Visually the membrane potential can be thought of like something below:
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Figure 2: Leaky Integrate and Fire

The neuron will spike when a predefined threshold potential is reached. After this spike it returns to
its resting potential and during the following refractory period it is inhibited from firing.[Diehl and
Cook|2015]|[Burkitt2006]

3.4 Topology

The range of possible network typologies in SNNGs is relatively similar to that of typical ANNs.
Classification SNNs use the same typologies as other machine learning algorithms, with convolution
and fully connected feed forward networks being common.[Diehl and Cook|2015]]

4 Hardware Accelerators

4.1 Analog

The brain can be thought to be more similar to an analog computer to a digital one. In the vein of
replicating the functionality of the brain, researchers are also attempting to replicate its construction.
Memristors are electronic devices that can in effect be programmed to have variable resistance and
function vary similarly to a the synapses in the human brain. When organized in a crossbar fashion
they become very useful in neuromphic chips to compute the weighted spike values. [Mukhopadhyay
et al.|2018]] This research is rather far from commercialization and various labs are looking to make
better memristors and identify applications where they are most effective. [Bouvier et al.[2019]
Two chips, Neurogrid and BrainScaleS, are hybrid digital and analog implementations and are more
aimed at simulating complex models of neural primitives instead of ubiquitous computational devices.
The goal of these devices is narrow and they cannot generally be used to accelerate the classification
tasks of SNNs. [DeBole et al.|2019]

4.2 Digital

Because of the difficulty of analog computation, and the relative maturity of CMOS digital imple-
mentations significant investment has been made in digital SNN accelerators. Essentially having
many specialized cores, these devices map many software neurons to the necessary hardware for
the neural primitive’s computation. Between these neural processing units there is either a direct or
packet based networking system to propagate the spikes to the next relevant neurons. [Bouvier et al.
2019[[Davies et al.[2018]] Intel, and IBM have both created similar digital implementations that follow
this model. [DeBole et al.[2019] Intel’s Loihi neuromorphic chip allows for online unsupervised and



reinforcement learning. Additionally because of the packet based networking structure many chips
can be networked together to enable the simulation of many neurons. [Davies et al.|2018]

S SNN Training

5.1 Supervised Learning

Training in a SNN differs from typical ANNSs in that they are not differentiable and thus cannot be
trained with standard supervised back-propagation. The two prominent methods to get around that
non-differentiability are training a typical ANN and then using software to convert the weights to
values that work for SNN or using function approximation of the neural models and then applying
standard gradient descent and back propagation techniques.[Bouvier et al.[2019]]

This conversion can be made with a relatively low cost to the accuracy of the network and significant
reductions in the number of operations needed. [Rueckauer et al.|2017]] It seems that research is
moving away from conversion to training SNNs directly. The current state of the art SNN on MNIST
is using function approximation of LIF neurons and achieves 99.4% accuracy. [[Ali Samadzadeh
2020]] With that level of accuracy, the paper claims there is no longer a need to go through the
process of training ANNSs and then converting them. There still may be a use case for this conversion
methodology in converting legacy ANNs to SNNs when spiking hardware becomes more prevalent.
There is no evidence that any means of back-propagation is biologically plausible or occurs in real
neurons. [Legenstein et al.[2008]]

5.2 Unsupervised Learning

The most common form of unsupervised learning the SNN literature is "Hebbian Learning" or
Spike-Timing-Dependent Plasticity (STDP) [Lee et al.[2019]]. Hebbian Learning comes from neuro-
psychologist Donald Hebb and can be over simplified as "Neurons that fire together wire together." It
is derived from empirical findings and theoretical reasoning of real biological neurons. There are
a few different algorithms that implement it in practice, but the general idea is that for a neuron,
the synaptic weight of an input is increased when that input event happens close in time to the
output spike of the neuron. Various hardware accelerators have this functionality built in to allow
for accelerated online training. It is difficult for STDP to train over multiple layers as the its inputs
are inherently local.[|Legenstein et al.[|2008|] STDP is also thought to be useful part of more complex
training techniques. [Bouvier et al.[2019]

5.3 Reinforcement Learning

Reinforced learning has been implemented as Reinforced Spike-Timing-Dependent Plasticity (R-
STDP) where the STDP determined change in synaptic weight is negated when the result is incorrect.
[Mozafari et al.|2019] There is biological evidence that neurotransmitters can act as a signal to many
neurons simultaneously and create a reward modulation effect. Further, R-STDP has been shown to
work with both timing and rate encoding and can avoid some of the downfalls of STDP with locality
[Legenstein et al.|2008]]

6 MNIST Accuracy

For classification tasks a common data set among SNN and ANN papers is MNIST digit classification.
Effort has also gone into creating a Neuromorphic-MNIST (N-MNIST) data set that covers the same
set of training and testing samples as MNIST, but is natively spiking and mirrors the actual function of
the human eye [[Orchard et al.|2015[]. MNIST results from the SNN and ANN literature are included
in the chart below. MNIST may not be the best benchmark to show the performance capabilities of
SNNs especially in areas where they outperform ANNSs, but MNIST results are prevalent.



Table 1: MNIST Performance

Paper MNIST Accuracy | Training Topology Neuron | Encoding

Byerly 99.84% ANN

Samadzadeh 99.4 % Back-prop | CNN LIF Rate-Based
Mozafari 97.2% R-STDP 3 layer DCSNN | IF Intensity-to-latency
Diel and Cook | 95% STDP 2 Layer CNN LIF Poisson spike-train
Lee 91.1% STDP DSCNN LIF Poisson spike-train
Panda >80% STDP CNN LIF Poisson spike-train

7 Conclusion

The scope of this project was perhaps too broad. It does not seem that the research is focused
on improving in a single domain. Research in this area is sprawling in many directions with
compelling applications and potential commercialization with many different permutations of the
various techniques. It does seem clear that some sort of specialized hardware acceleration is needed
to make SNNs significantly more useful than typical ANNSs. Further while the best performance on
MNIST is achieved with function approximation and back-propagation, STDP and R-STDP seem
like plausible means of training networks that can also be implemented in embedded hardware. SNN's
are a compelling candidate for the future of neural networks and making computers comparable to
brains.

Broader Impact

Improving SNNs has the potential to produce much more efficient computer accelerators and gain
insight to the functionality of the brain. More efficient chips allow lower energy consumption and thus
more widespread deployment of advanced neural networks. This efficiency would affect embedded
devices as well as data-centers, which are often constrained by their power efficiency. With better
insights into the brain we get closer to replicating its structure and functionality and enabling more
capable algorithms and computers.
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