
Machine Learning Final Project Report

Marco Christiani
Virginia Tech

Blacksburg, VA
mchris@vt.edu

Beau Wong
Virginia Tech

Blacksburg, VA
beauwong@vt.edu

Abstract

For our Machine Learning project, we decided to build a learning model to ac-
curately predict the cost of an item from an image of that item. The intended
application is to take pictures of certain items in the real world and be able to
give a close estimation to what that type of item would cost. This project requires
knowledge of web scraping, machine learning techniques, and image recognition
algorithms. The project spanned 3 months and was programmed in Python. We
implemented a classification method using neural networks and the TensorFlow
library. At the end of the project, we were able to produce a model that produced
90% training accuracy and 28% testing accuracy. Unfortunately, we conclude that
this model is unreliable for classifying prices of products; however, we are able to
make recommendations on how our approach could be improved in the future.

1 Motivation

When visiting a grocery store, shelves are usually littered with price tags. This chaos can make it
hard to tell what the actual price of an item is. We wanted to produce an algorithm that could remedy
this problem. In addition to this, both team members had an interest in image processing and web
scraping, so price prediction from images was a great fit.

2 Project Overview

We were able to break our project down into two main phases: data collection and modeling. In
the data collection phase we collected product data, cleaned it, and sourced product images with
web scraping techniques. In the modeling phase, we experimented with modeling approaches before
settling on a price tier classification approach and evaluated our model’s performance using the
testing data.

3 Data Collection

In order to train our model, we needed to choose from a number of different online retailers in order
to gain pricing information and links to product images. Due to time constraints, we decided against
trying to parse multiple datasets from multiple retailers. Thus, we considered datasets specific stores
such as Walmart, JCPenney, and Target. However, we concluded that the diversity of Walmart’s
product lineup allowed us to expose our model to a variety of images while using only one dataset.
We sourced a 6 month old dataset from Kaggle [1] for Walmart’s inventory, which included about
30,000 different products.

The dataset included many details about each product, so the first step was to determine and extract
only the features which were most relevant to our project. After printing out one sample product we
concluded we only needed to extract the product’s Unique ID (UID), Product URL, Name, List

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Price, Category, and GTIN (Global Trade Identifier Number). In order to gather the corresponding
product images, we had to employ some web scraping techniques. To do this, we wrote an Python
script that navigates to the product URLs, parses the webpage searching for the correct image HTML
tag, and extract the src attribute. Next, the script uses the string extracted from the src attribute to
construct a URL that points to the product image. This image URL along with the aforementioned
columns we deemed most relevant are then written to a CSV. It is worth noting that after this process
was completed, nearly 13.93% of the product links in the dataset were dead links. We speculate that
these dead links are caused by products being discontinued.

Figure 1: Outline of the data collection process

Next, we loaded the CSV created in the previous step into a new Python script on Google Colab. At
this stage, we needed to make an implementation decision between visiting the links with HTTP
requests while training and testing our model, or saving the images to Google Drive and reading from
disk on Google Colab. We chose the second option since the first option would have likely slowed
the training process considerably, and we will likely be training several models. Therefore, we wrote
a script which navigates to each image link and downloads the image. The image is then saved using
its corresponding GTIN as a unique identifier (some sample images can be seen in Figure 2).

Figure 2: Two sample product images scraped and saved by Python scripts

4 Modeling

We decided to use classification for our method of training the model. By dividing the range of
products and prices into several, similarly-sized price tiers, we could train a model that would predict
which price tier a certain product could go into. We created a distribution of all of the different prices
found in the dataset. From there, we were able to assign each item into one of 10 different price tiers.
Finally we moved all of the different images we gained from web scraping to the folder of its product
determined price tier.

Two methods rose from utilizing price tiers. One would utilize the tiers in a continuous fashion, where
one price tier would end where the next price tier would start. This method would encompass all of
the data we scraped, but there was potential that items that existed on the edges of each boundary to
be misclassified. Another method would be to include gaps in between each price tier. This would

2



make each price tier much more defined from the others, but at the sacrifice of half of the collected
data.

TensorFlow is a library in Python that is capable of building Convolutional Neural Networks to
classify images [2]. We decided to use this library when training our data due to its extensive
documentation and widespread use. Tensorflow allowed us to augment our images to a form that
would be easier for Tensorflow’s methods to build a model [3]. Making changes like normalizing
the scale of color values and reproducing the image at a fixed resolution expedited the process of
modeling.

Our chosen network consisted of three convolutional layers separated by max pooling layers and
followed by a dense layer. To address some issues discussed in the next section, we later added a
dropout layer in an attempt to mitigate overfitting.

5 Results and Analysis

While our first model was able to achieve approximately 90% accuracy on the training data, the test
accuracy lagged behind considerably. As can be seen in the first accuracy plot, the testing accuracy
plateaus at around 26% accuracy after 4 epochs. This clearly indicated to us that we had an overfitting
problem that needed to be addressed. We attempted to address this issue using two techniques:
dropout layers and data augmentation. First, a dropout layer was added after the final max pooling
layer that would randomly drop 20% of the outputs. Next, we used data augmentation to apply
random transformations such as rotations and flips to the training images. The results from our new
modeling approach can be seen in the second accuracy plot.

Figure 3: Comparison of accuracy before and after overfit-mitgation strategies were applied.

Key observations to make from these plots is that before the overfit prevention techniques were
applied, the testing accuracy stalled at just the fourth epoch and never exceeded 26% accuracy.
Contrast this with the second plot, which demonstrates the testing accuracy continuing to increase
until the 80th epoch and approaching 29% accuracy. While these results are underwhelming, we are
hopeful that our approach could be improved and result in better models in the future.

3



6 Conclusions

Although the final model was not able to classify images reliably, our project was still able to
demonstrate many important machine learning techniques. Furthermore, both of us have gained
experience in the planning and process of building a machine learning model.

In hindsight, although the Walmart database was seemingly huge, we believe that the primary reason
why our model did not perform to expectation was due to the lack of data. Since the product selection
at Walmart is so diverse, there were not enough examples of each type of product for the model to
learn effectively. It may have helped to try and incorporate other retailers into our data, as their prices
would not have differed too much from Walmart’s pricing. It is also possible that the price of items
are dependent on features that are not adequately represented in the image. For example, a product
whose price is dependent on weight would be quite difficult to learn from an image alone. This proves
especially difficult with web scraped images, since each image is scaled to be of relatively the same
size for the webpage.

If we were to continue working on this project, we would like to increase the size of the dataset as
well as potentially try different characteristics of items to see if it would yield better results. Another
approach we have considered, is classifying objects as categories (i.e. grocery items, toiletries, etc)
before predicting the price. Finally, we would ideally implement a way for a user to take a picture of
an item and see what that item’s typical price is. This could also be used to inform the user if the
price of a certain product is too high at a certain retailer, encouraging them to purchase it elsewhere.

4



References

[1] https://www.kaggle.com/promptcloud/walmart-product-data-2019

[2] https://www.tensorflow.org/tutorials/images/classification

[3] https://www.tensorflow.org/tutorials/images/data_augmentation

5


	Motivation
	Project Overview
	Data Collection
	Modeling
	Results and Analysis
	Conclusions

