
Predicting Financial Market Volatility

Jack St. John
Virginia Tech

Kyle Weisbaum
Virginia Tech

Abstract

Financial markets exhibit a behavior known as “volatility clustering." Periods1

of high volatility tend to be followed by more periods of high volatility. The2

behavior makes the volatility of financial markets amenable to prediction using3

time-series models. This paper attempts to improve on the predictive ability of4

the GARCH model using a gradient boosted autoregressive model and a recurrent5

neural network. Currently, the GARCH model outperforms both of the other6

methods, but we are still figuring out the details with regards to hyperparameter7

tuning.8

1 Introduction9

To model volatility we assume returns follow a process of the form10

Rt = α+ εt

When specifying this functional form, we make no assumptions about the specific distribution of ε,11

only that it has mean zero and variance σ2
t . After squaring and taking expectations we get:12

E
[
(Rt − α)2

]
= σ2

t

In general, we’re interested in predicting values of σt using its previous values, which may be13

estimated using previous squared deviations in returns.14

2 Methods15

To forecast volatility we used a GARCH type model, a gradient boosted autoregressive model and a16

recurrent neural network.17

2.1 GARCH18

The GARCH model specifies an ARMA(p,q) process specified for σ2
t . It takes the form.19

Rt = a+ a1Rt−1 + εt, εt ∼ N(0, σ2
t )

σ2
t = α+

p∑
i=1

ρiε
2
t−i +

q∑
i=1

γiσ
2
t−i



These models remain extensively used for risk management at major financial firms due to their20

relative simplicity and remarkable robustness. The ARMA process allows the model to pick up on21

both short-term dependencies via the AR term, and long-term dependencies in the time series via the22

MA term. GARCH(1,1) was used in the project. The simple specification is standard and usually23

gives the best results.24

The GARCH enjoys substantial popularity because it is good for prediction and because in addition25

to the fact that you can use it as a model, it defines a stochastic process. So after you fit the model,26

you can then use it to run monte-carlo simulations to assess financial risk. GARCH models are often27

used over log-normal models because they capture the excess kurtosis of financial data series.28

2.2 Boosted Autoregressive Model29

The Boosted Autoregressive model is similar to the GARCH, but with only AR terms and no MA30

terms. We then apply gradient boosting to see if we can improve the predictive ability.31

Gradient boosting first considers a linear regression model. It makes a tree by splitting the residuals32

from that model based on the predictors, then it fits more linear regression models to predict the33

subsets of the residuals. It repeats this process a number of times specified by the user, building a34

large tree. Predictions may then be made by summing the results of the leaves in the tree.35

In general the process is as follows:36

1. Fit linear model y = f(X). Get residuals based on fitted values ε = y − ŷ37

2. Split residuals using some decision rule based on X . ε1 ∪ ε2 = ε38

3. Fit linear models ε1 = f(X) and ε2 = f(X)39

4. Repeat40

The features that we let the boosting algorithm use are the previous 10 values of the squared returns.41

2.3 Recurrent Neural Network42

A recurrent neural network is a type of neural network that takes feedback from a hidden layer as43

input for a later iteration of a prior layer. This feedback feature separates recurrent neural networks44

from others as a notably great candidate for modelling time series data. Conceptually, the network45

used in this project functions as a set of long short-term memory network (LSTM) layers. Any given46

layer has input, forget and output gates to manage the information flow into subsequent layers. The47

forget gate determines what information to forget from memory, while the input gate determines48

what new information to include. Utilizing LSTM helps us avoid running into a vanishing gradient49

problem, which is often faced during training. We’ve specifically implemented four LSTM layers and50

four separate dropout layers to prevent overfitting. We plan to continue editing the structure of this51

network in attempt to decrease the overall sample MSE and boost performance. The ability of the52

RNN to have “long memory" should make it comparable to the GARCH which can capture long-term53

dependence with the MA term. A big theoretical advantage over the GARCH should be the fact that54

the activation function allows the RNN to capture non-linear forms of dependence in the data, while55

the GARCH is a strictly linear model.56

The following equations represent the input, forget, and output gates in an LSTM respectively:

it = σ(wi[ht−1, xt] + bi)

ft = σ(wf [ht−1, xt] + bf )

ot = σ(wo[ht−1, xt] + bo)

it = input gate, ft = forget gate, ot = output gate, wx = weight for the respective gate(x) neurons
ht−1 = output of the previous LSTM layer, xt = input at the current timestamp

bx = biases for the respective gates(x)

Lastly, The equations for the cell state, candidate cell state and final output:57

c̃t = tanh(wc[ht−1, xt] + bc)

2



ct = ft ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh(ct)

ct = cell memory at t, c̃t = candidate for cell state at t, ht = output of the LSTM layer

3 Results58

The models were estimated on the five day sum of daily squared returns of the TLT long-term59

US Treasury bond ETF. Except for the RNN, the models were estimated on the 450 observations60

proceeding each individual out of sample observation.61

The RNN was estimated on the training set, but was not re-fit for every observation. The RNN just62

took too long to fit. This likely explains it’s sub-par performance compared to the other models, but63

the one we did do a re-fitting for every observation it still under-performed.64

We couldn’t really adjust the GARCH to predict in the same manner. The MA term depends on65

previous period errors, so it makes that rather difficult. Re-fitting the model for every observation66

then predicting forward one is more natural with the GARCH.67

Despite the fact that the GARCH did the best, they’re really all quite good. This is MSE, so the68

difference between the RMSEs, which is in the original units, is really quite low.69

GARCH: 11.27770

Boosted Autoregressive: 11.86671

Recursive Neural Net: 14.7872

73

Also, we tried using data on smaller time-scales, in which the volatility clustering effect should be74

stronger, but no significant change in performance was noted.75

3.1 Model tuning and alterations76

3.1.1 Boosted Autoregressive Model77

The XGBoost package has quite a few hyperparameters.78

α and λ act as regularization parameters.79

The “max depth" parameter is self explanatory. It sets a maximum for how large the trees can get.80

The “num estimators" parameters denotes the number of trees formed.81

The “colsample_bytree" hyperparameter acts like a dropout parameter. It makes it so that the82

algorithm uses only a subset of the data when building trees.83

To tune these hyperparameters we use grid-search cross-validation which took awhile to run, but led84

to fairly large improvements in performance. Oddly, the best set of hyperparameters involved having85

a fairly large number of trees of depth 1. I’m not sure why exactly this is the case, but it does predict86

better out of sample than other combinations of parameters. The model substantially outperformed a87

basic autoregressive model.88

The output from grid-search is below:89

XGBRegressor(alpha=0, base_score=0.5, booster=’gbtree’, colsample_bylevel=1,90

colsample_bynode=1, colsample_bytree=0.5000000000000001, gamma=0,91

gpu_id=-1, importance_type=’gain’, interaction_constraints=’’,92

learning_rate=0.1, max_delta_step=0, max_depth=1,93

min_child_weight=1, missing=nan, monotone_constraints=’()’,94

n_estimators=80, n_jobs=0, num_parallel_tree=1,95

objective=’reg:squarederror’, random_state=0, reg_alpha=0,96

reg_lambda=0, scale_pos_weight=1, subsample=1, tree_method=’exact’,97

validate_parameters=1, verbosity=None)98

3



3.1.2 Recurrent Neural Network99

The first thing tested and altered was the dropout rate in the dropout layers. We were worried we were100

over-fitting after realizing that the model failed to pick up on a lot of the variability spikes present in101

the testing data. By increasing the drop rate from 20% to 38 % we saw a decrease in MSE.102

Next, we analyzed how many memory layers we were using, as well as what the unit size was for103

said layers. We discovered that cutting back the LSTM layer count from 4 to 2 reduced the MSE and104

sped up computation.105

We experimented with epoch size, trying a number of different values ranging from 100 to 2500. As106

expected, more epochs led to better fitting, but more computation time. Although it makes sense to107

maximize accuracy, we found that the increased accuracy between 1000 and 2500 epochs became108

negligible for our use case.109

Lastly, e spent time analyzing and testing various lag lengths, ranging from just 1 period, to 50.110

The greater lags significantly slowed down the model, and smoothed many of the predictions. We111

found a strong relationship between lags and dropout. The lower dropout rates made the model more112

sensitive, as did lower lag rates. Our best run with the RNN by the end of the project produced a113

sample MSE of just under the orignial, at 14.78 (See Figures section). Although the RNN was much114

less effective than both of the other models, now appreciate the complexity and flexibility associated115

with this model. It was also necessary to not re-fit the model for every observation, the other models116

have the computational simplicity to allow that, while each RNN takes a long time to fit.117

One of the more effective runs, shown below, included 5 lags, 500 epochs, 3 LSTM layers, 10 units118

per layer and a dropout rate of 70% at each layer. In general, The more simple the model was and119

the less sensitive it was to the previous observations, the better it did. The RNN without very high120

dropout rates would tend to over-predict after spikes. Were we to continue the project trying to121

understand the RNN better would be a priority. It’s likely better at predicting time-series with more122

complex behavior. The volatility series has a lot of noise and the RNN seems to get “tricked" in a123

sense by the noise, while the ARBoost and GARCH models are less sensitive. With a lot of dropout124

regularization, the RNN started to look and perform more like the GARCH which you can tell by125

looking at the figures below.126

3.2 Figures127

The following plots demonstrate the accuracy of the predictions for each of the approaches after128

altering parameters and model implementation.129

130

4



131

132

Conclusions & Broader Impact133

Being able to anticipate volatility, and by extension manage risk is an essential function for financial134

institutions. The failure of risk management functions in banks has led to catastrophe in the past.135

Improving our understanding of financial risk, though most directly beneficial to financial institutions,136

indirectly benefits all of us.137

Note on Additional Results138

Apologies if it seems like there’s not much in terms of additional results from the milestone report.139

We really had most of what we wanted to do done by the milestone. All that was left was to tune the140

hyperparameters. We managed to significantly improve the performance of the boosted AR model,141

while improving the RNN remained elusive.142

Contributions143

Kyle did the coding for the GARCH model and some of the RNN. Jack did some of the RNN and the144

boosted AR model. Both contributed to the final.145

5



References146

[1] Haykin, S. 2009. Neural Networks and Learning Machines. New Jersey: Prentice-Hall, Inc.147

[2] Li, C. A Gentle Introduction to Gradient Boosting, Northeastern University.148

[3] Hochreiter, S. and Schmidhuber, J. 1997. Long Short-term Memory, Neural Computation.149

[4] Vania Orva Nur Laily et al 2018 J. Phys.: Conf. Ser. 1025 012103.150

[5] Schmidhuber, J. and Cummins, F. 2000. Leanring to Forget: Continual Prediction with LSTM, Neural151

Computation.152

6


	Introduction
	Methods
	GARCH
	Boosted Autoregressive Model
	Recurrent Neural Network

	Results
	Model tuning and alterations
	Boosted Autoregressive Model
	Recurrent Neural Network

	Figures


