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Abstract 

There are many media streaming services today that do not have their own form 
of a recommendation system. A movie streaming service may have hundreds of 
thousands of movies. A dataset of this size takes a significant amount of time to 
read each entry. This experiment utilizes machine learning techniques to optimize 
the problem of filtering large dataset. The experiment used a large dataset of 
movies with their respective information and tags and sorted these values into a 
matrix. Through further filtering techniques, the algorithm can find a list of 
movies with similarities to the one given and ranks each movie by assigned 
weights.  

 

1 Problem statement 

As stated in the abstract, we will use machine learning filtering techniques to reduce the size and 
obtain a dataset that is manageable. We want to maintain a high accuracy, accuracy in this case will 
be recommending ten movies that are like the ones given and have a low compilation time. We 
expect that reducing the datasets by filtering out unwanted data will drastically reduce compilation 
times. We plan to use cosine similarity with matrices to accomplish our tasks and achieve our goal 
stated above. 

2 Analysis of results 

2.1 Initial testing 

We originally selected our data from  

https://www.kaggle.com/danielgrijalvas/movies 

Which contains a csv file of 220 of the most popular movies from each year (ranging from 1986 to 
2016) for a total of 6820 movies. The utilized pandas library to read in all of our movie 
information from a csv file and formatted it into a data frame. We then filtered our all the movies 
that has a lower rating because they are less likely to be attractive to the user. We implemented our 
algorithm to find similar movies to a movie given using the genre of a movie. We were able to 
form a list of movies that had similar genre and ranked in descending order based on the average 
rating given.  

2.2 Problems with initial dataset 



We tried to further our algorithm by applying new techniques, but we found some flaws with our 
dataset. While this dataset was concise, it lacked in some describing features we planned to use as 
tags utilized in our improved algorithm. This dataset had only a singular genre for each movie, 
many movies have multiple genres and can not be properly represented by one. The dataset also 
only had one actor listed for each movie. Many movies can have multiple star actors and we 
planned to use this as another feature for our algorithm. It also lacked a movie description where 
we could find key words. The final flaw was it only had a score based on critic reviews. We 
planned to use a weighted rating for each movie based on both user and critic reviews. 

2.3 Improving dataset 
 

We found a new dataset from 

https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset 

and this dataset contained 85855 movies. A larger sample size can improve our results and this 
dataset had the descriptors we were looking for. It has multiple genres, multiple actors, a movie 
description, directors, writers, and reviews from both users and critics listed. It also has top movies 
from different geographic locations so we can filter movies based on the user’s preferences on 
location or language.  

2.4 Filtering out unnecessary data 

We took the average of the movie reviews and obtained an average rating of just over 5 out of 10. 
Initially we planned on filtering out movies below a 7 rating, we chose to set the threshold a bit 
lower to not filter out possible sequels or similar movies to the ones given. We filtered out all 
movies that received less than 5000 votes. The votes ranged from 99 to 2278845 votes, and we 
tossed the data with low vote counts to improve accuracy. Finally, we filtered out all movies that 
lacked in information necessary to apply our algorithm. We filtered the original 85855 movies 
down to a manageable 8655 movies. 

2.5 First algorithm 

Initially we used k nearest neighbor classifier as a baseline experiment. We hypothesized it to be 
slower than our planned algorithm. It had long compilation times and our hypothesis was 
confirmed. The first step in creating our algorithm was to take a movie that the user enjoyed and 
find all movies similar with similar genres. This would filter the matrix to only contain movies 
with genres like the one given and rank them in descending order based on our weighted rate. The 
following is our results from running a genre recommendation for “Thriller” genre movies. 



 

2.6 Improving the algorithm 

We can now improve our algorithm using key movie descriptors as tags. We combine movie 
actors, directors, and genres together to form our tag descriptors. Then create a CountVectorizer 
and use our tag descriptors to create a matrix by transforming our vectorizer. Now this matrix can 
be used to perform cosine similarity to find a movie like one given. We tested the algorithm using 
the movie Logan which is an action/adventure movie with Hugh Jackman and Patrick Stewart as 
actors, and James Mangold as director. The top 10 similar movies were 

 

There are multiple movies with Hugh Jackman and Patrick Stewart in the results, all the movies 
have the action, adventure, or thriller tag. 

 



3 Conclusion 

Our algorithm achieved our goal and found 10 movies like the given movie based on movie 
descriptors obtained using tags. We suggest that further research can be done by using co-
occurrence with embedding key words from the movie description. This will be able to find words 
that commonly are found in the context of others. For example, an improved algorithm would be 
able to identify well known movie characters and identify similar movies based on spin-offs of the 
given movie or a movie that contains similar fictional characters. 
 

4 Citations 

Used libraries pandas, scikit, and matlab pyplot 

https://scikit-learn.org/stable/ 

https://pandas.pydata.org/ 

https://matplotlib.org/tutorials/introductory/pyplot.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 


