Project Submission: Machine Learning

Spencer Buebel Nick Dyben Charlie Kelley

Abstract

This is a final report on the Machine Learning project focused on Image detection
of firearms in still images. In this project we applied a CNN and TensorFlow in
order to achieve that goal. These following sections will go over the following
stages of our project: The data set we used, the basics of how image classification
through bounding box overlays operate, how we classified our data, the algorithm
we implemented, how Tensor Flow assisted our implementation, our results, and
our conclusions.

1 Acquiring a Data Set

We started with a Kaggle dataset comprised of 333 images with one or more guns. These images are
taken from movies and Google images. These images are unlabeled. The specific repository for this
data is:

https://www.kaggle.com/issaisasank/guns-object-detection

We have drawn bounding boxes on top of a subset of images in the dataset to show that the labels
are, in fact, accurate, and we have split the data into training and testing data so that we can test the
validity of our model.

1.1 Bounding Box Overlay

The labels provided give the number of guns in each image, and two corners that define the rectangular
bounding box for each gun in the image. We start by writing a script to parse these labels and draw
rectangles on top of the first 5 images to ensure the labels are accurate. The following figures show
some examples of bounding boxes around guns in our labelled dataset.

Figure 1: Image with bounding box

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.


https://www.kaggle.com/issaisasank/guns-object-detection

r..
Gradits-to: 78078

Figure 2: Image with bounding box

Although we have proven our dataset’s labels are valid, we must conform to the .xml and .csv label
formats required by Tensorflow for training. We leveraged a tool called Labellmg to help expedite the
process of generating a well-formatted .xml file for each image that includes the image dimensions,
the locations of the gun(s) in the image, and the file name. The final step in the data preprocessing
was to run an open source Python script to generate .csv files for the training and testing sets of
images to concisely summarize the contents of all the .xml files.

1.2 Training and Testing Data

After verifying the validity of our data and labels, we separated a subset of data for testing and one for
training. The test data is important so that we can verify the accuracy of our CNN model after training.
In our Jupyter notebook, we designated the first 300 images and labels for testing, and the remaining
33 images and labels make up the testing data set. Since the images are already randomized, there is
no need for shuffling. The following figures show the size of the test and training data sets are as
expected.

Now, separate training and testing data. This is straightforward.

In [28]: training data = data[:388]
training labels = labels[:388]

test _data = data[388:]
test labels = labels[388:]

print(len{training data), len{training labels))
print{len(test_data), len(test_labels))

368 3ed
33 33

Figure 3: Dimensions of training and test data are correct.



2 Single Shot Detector Algorithm

2.1 The Chosen Algorithm

We use the term single shot detector, SSD, to refer broadly to architectures that use a single
convolutional network to directly predict classes and anchor offsets without requiring a second stage
classification operation. It is significantly faster in speed because it ignores this second classification
stage. High detection accuracy in SSD is achieved by using multiple boxes or filters with different
sizes, and aspect ratio for object detection. The different sizes allow for easier detection of different
sizes of objects without the second pass over the image. It also applies these filters to multiple feature
maps from the later stages of a network.

The specific SSD model we chose has a base VGG-16 network followed by multi-box convolution
layers. The VGG-16 base network for SSD is standard for most CNN architectures for high quality
object detection. Prediction for the bounding boxes and confidence for different objects in the image
is done not by one but by multiple feature maps of different sizes that represent multiple scales.

Extra Feature Layers
VGG-16 A

- through Conv5_3 layer Classifier : Conv: 3x3x(4x(Classes+4))

]

Classifier : Conv: 3x3x(6x(Classes+4))

]

Detections:8732 per Class

74.3mAP
59FPS

SSD

Conva_3 Conve Conv? 10 5 Conv: 3x3x(4x(Classes+4))
Comve_2 2 A N g

\. % \ -
10 1 ¥ Conf10_2 Com11.2

Non-Maximum Suppression |

)

Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv: 3x3x256-s1 Conv: 3x3x256-s1

Figure 4: Single Shot Detector Architecture

Utilizing the SSD algorithm instead of the LeNet algorithm was a decision we made due to the fact
that the SSD algorithm was faster than the LeNet algorithm while also being able to achieve higher
levels of accuracy. It’s a significant upgrade from the base LeNet algorithm, which has been surpassed
several times in the last decade.

3 Tensor Flow

TensorFlow can help to build neural network models to automatically recognize images. These are
typically Convolutional Neural Networks(CNN) but can start from several different base models. The
TensorFlow API provides the tools with which to train a SSD, CNN, and R-CNN algorithms. Some
of these models are trained out of the box on a given database and with many common labels.

3.1 Training the model

For our project we selected TensorFlow’s trained SSD model that used a custom data set called
"coco." The coco, or common objects in context, data set is a compilation of images of very common
objects - such as dogs, people, or chairs. Unfortunate to our project, the coco data set does not come
trained with any notion of a firearm; however, TensorFlow allows the ability to do custom training
on top of the training they have provided. With this knowledge, we provided TensorFlow with our
data set of firearms and allowed it to train an SSD model on top of the "coco" model. Each layer of
training modifies the model’s prediction map. Each location in this map stores class confidence and
bounding box information as if there is an object of interest at every location. This causes a lot of
false alarms so another process selects a list of the most likely prediction. This is, in a sense, how
TensorFlow helped us to identify firearms in a frame.



Training was done locally on an AMD Ryzen 7 3800x meaning training was relatively slow compared
to the possibilities that TensorFlow allows with CUDA. We had trouble getting TensorFlow to
recognize our NVIDIA GPU, even with CUDA installed, and instead just trained on the CPU.
TensorFlow has a great training method where it stores checkpoints after so many iterations of
training, which makes training a process which can be interrupted and restarted from a checkpoint.
Similarly, if training never converges below a threshold error, checkpoints are still saved, meaning
the model obtained can still be used, even if the training algorithm never finishes. Initial training loss
was 13.0724, and decreased below 5.0 through about 200 steps of training, with each step taking
between 3.75 and 4.25 seconds to complete.

4 Results

After training our model on top of the SSD "coco" model, we ran prediction algorithm on our 33 test
images. The following figures summarize our results. Overall, results were good, with many correct
classifications, some missed classifications, and fewer false, duplicate classifications. We believe
the erroneous results can be explained by a small training dataset (300 images), and poor labelling.
Since labelling was a time-consuming, tedious endeavor, it is likely that the labels we generated with
Labellmg were less precise than we would have liked, limiting the performance of our trained model.

1 7
ungun: 50% [} -
" = . ‘-hf
‘ e
/ suhtithes
1 * sotn seloctions }
special features
trailors

"9

(c) High confidence (d) Good result

Figure 5: Ideal Results

The results shown above demonstrate cases where detection occurred and was correct. Image (a)
shows that the model is able to identify multiple guns within an image, and the remaining images
show that multiple types and sizes of guns are able to be detected. The model can sort through
different backgrounds and lighting conditions, and still recognize guns. The results also show that
our model is able to tell us how confident it is that a gun is present in an image. If this tool was going
to be used for law enforcement, this statistic would be very important, as we would want to avoid
false alarms, and the threshold confidence for notification could be tuned.



gun: 64%

(a) Multiple detection (b) One detection - two guns

(c) Multiple detections (d) Missed gun
Figure 6: Sub-Ideal Results

These next results show some less ideal classifications. Images (a) and (c) show examples of
false duplicate classifications. In our test dataset, these were the only two examples of such false
classifications, and this is not a horrible result, because a gun was still present in each image, and
both guns were still detected. Image (b) shows an example where both guns are grouped into one
bounding box. Again, this is not the worst possible mistake, since for our application, it would still
notify law enforcement appropriately, and manual inspection of the flagged image would clearly tell
the authorities more information. Image (d) recognized the gun on the left, but missed the gun on the
right. This is likely because of the unusual angle the rightmost gun is being held, where most of the
shape is obscured. Perhaps this missed classification could have been rectified with a larger dataset
including more guns in different orientations, since our training dataset only held 300 images.

Figure 7: Incorrect Results

Finally, these results show the worst results of our model. In these two cases, the guns in the images
were not detected or located by the model, which would definitely be a problem for a safety-critical
system. Again, we attribute this type of error to a small dataset and inaccurate labels.

These Results could continue to improved with a larger dataset, more accurate labels, and imple-
menting a higher batch cross validation for testing. If we applied a higher batch cross validation for
testing, it would avoid the possible overfitting caused by the small dataset used to train the model.



5 Conclusion

Based on the results, our project was an excellent success. We obtained superior than expected results,
most likely due to the optimization of the SSD algorithm, and have a clear grasp about how we would
further the project beyond this point. With enough advancements, we could not only improve the
accuracy of the model in subpar testing data, but potentially expand to having several classifiers to
identify types of firearms. This would have far reaching consequences for law enforcement, being
able to identify situations with more informed threat levels.

6 Contributions
» Spencer: Worked on data pre-processing and fitting bounding boxes on images. Split data
into training and test data.
* Nick: Researched specific CNN algorithm we will use, and wrote up results.

 Charlie: Researched and found initial Kaggle data set and thought about our next steps.

7 References

[1] H. S. Chatterjee “Various Types of Convolutional Neural Network,” Medium, 24-Jul-2019. [Online]. Avail-
able: https://towardsdatascience.com/various-types-of-convolutional-neural-network-8b00c9a08alb. [Accessed:
22-Oct-2020].

[2] C. Li, “Tips for implementing SSD Object Detection (with TensorFlow code),” Lambda Blog, 10-Feb-
2019. [Online]. Available: https://lambdalabs.com/blog/how-to-implement-ssd-object-detection-in-tensorflow/.
[Accessed: 03-Dec-2020].

[3] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadar-
rama, and K. Murphy, “Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[4] TensorFlow, Object Detection, (2020), GitHub repository, https://github.com/tensorflow/models.git



	Acquiring a Data Set
	Bounding Box Overlay
	Training and Testing Data

	Single Shot Detector Algorithm
	The Chosen Algorithm

	Tensor Flow
	Training the model

	Results
	Conclusion
	Contributions
	References

