
Final Report: COVID-19 Diagnoser

Oliver Stein
Department of Computer Science

Virginia Tech

Diego Espinoza
Department of Computer Science

Virginia Tech

William Pryor
Department of Computer Science

Virginia Tech

Nebiyu Elias
Department of Computer Science

Virginia Tech

Abstract

Our project is attempting to recreate and improve a paper[1] that uses machine
learning to determine whether a person with a certain set of symptoms and pre-
existing conditions has COVID-19. The paper we are attempting to recreate uses
logistic regression and xgboost models, but our model will use weighted k-nearest
neighbor (KNN) to classify data points, utilizing scikit learn’s knn algorithm along
with our own adapted weighting procedure.

1 Methodology

We are utilizing Jupyter Notebook in Python to collect, sort, manipulate, and graph data found from a
CDC report in July. The initial steps in the Jupyter Notebook are similar to HW 2 regarding setting up
the plotting mechanism and graphs. We are importing discrete data values including 5 symptoms and
5 pre-existing conditions - from which we calculate a score for each (symptom score and pre-existing
condition score) and plot them on 2D graph, and use the Euclidean distance formula to operate our
KNN classifier[Fig. 2]. From there, we can move on to the actual weighted KNN algorithm, which
gives more emphasis (or “weight”) to the features more highly correlated with a specific COVID-19
outcome.

We split our imported data up into 2 sections: 80% of the data will go to “training” (just plotting the
labeled points on the graph in order to operate with KNN), and 20% for validation to determine how
well our algorithm is classifying. Validation is used for our error calculation in this case because
there is no traditional loss function for KNN.

Because our values that we are importing from our dataset are entirely discrete, we need to compute
a score for plotting that belongs to a higher-dimensional range. We plotted our values on a graph
labeled “symptom score” on the x-axis and “pre-existing condition score” on the y-axis, each of
which is a non-discrete value calculated from 5 discrete symptom/pre-existing condition data points
in conjunction with the feature’s respective weight.

The weight calculation was modelled based on a common DNA parsing scoring matrix algorithm
which computes weights for nucleotides based on their frequency of correlation with other similar
sequences.

2 Algorithm Choice

We are going to use a weighted KNN algorithm to ensure that the prediction of whether the patient has
COVID-19 is biased towards more consistent groupings of data points. This is important because it
will prevent a data point’s classification from being affected as much by erratic data points, which are
caused by people with odd combinations of symptoms, as well as accounting for bad or inconsistent



data collection by hospital workers and researchers. It also emphasizes features that are more strongly
correlated with the diagnosis. We can create the weights using a scoring matrix similar to the
bioinformatic BLASTP scoring algorithm which calculates the log-based frequency of any given
occurrence in the data [Fig 3].

3 Applications

Knowing whether a person is likely to have COVID-19 or not is a powerful tool at this time. We
can use different data representations to signify how likely the virus is to exist based on different
features such as each individual symptom, a common combination of symptoms, or different time
periods where some symptoms were more prevalent than others. We can use this to track the virus’
development over time, and potentially pinpoint what evolution the virus is at.

This type of symptom and condition classifying has been attempted by websites like WebMD
using far more rudimentary techniques - by applying legitimate learning algorithms and scoring
mechanisms we can much more accurately deliver diagnostic scores to people at home suffering from
diseases/conditions that exceed COVID-19. Many people still refer to WebMD to try to diagnose
their illnesses, highlighting the demand for this type of technology.

4 Results

The COVID-19 diagnoser has an accuracy of 54.6%. The calculation for accuracy occurs in the last
block of the Jupyter Notebook. The classifier in the paper we attempted to recreate was claimed to be
approximately 99%. Our diagnoser used 11 input variables: breathing problems, fever, dry cough,
sore throat, running nose, asthma, chronic lung disease, heart disease, diabetes, and hyper tension
[Fig. 4]. The classifier in the notebook used 19 input variables [Fig. 1].

5 Conclusion

We created a COVID-19 diagnosing tool that was less accurate than the tool in the paper that we
were recreating. However, our tool improved upon the one in the paper in that it did not require as
many input variables[Fig 1]. Inputs that were left out included gastrointestinal, contact with COVID
patient, abroad travel, and many others. Removing these data points will allow people to get results
without being as invasive or asking about things that the user may not know how to answer [Fig. 4].
Compared with the model provided in the paper we recreated, our model traded some accuracy for
ease of use.

A potential change that could be made in the future that might increase accuracy is using an algorithm
that works better with higher-dimensional data, such as a Naive Bayes classifier. We could also do
more research and experimentation to determine which symptoms and conditions have the greatest
impact on the diagnosis. This would allow us to maximize the accuracy while minimizing the number
of required inputs. Although our agent’s accuracy was not as good as the agent we were attempting
to recreate, our group is confident that we are able to use machine learning to process real world data
and provide valuable analysis of that data.

6 Contributions

Will Pryor: Determined how the data we collected could work with KNN, research ways to weight
data points for KNN, help determine which features should be included in our model.

Nebiyu Elias: Developing basic methodology, initial kaggle analysis and developed different ways to
tweak the algorithm. Discussed different ways to represent data and expansion possibilities at a later
date.

Diego Espinoza: Researched alternative approaches to Covid-19 diagnoser and found the paper
(Kaggle notebook) directly related to the implementation in the project. We enhanced the algorithm
used in the notebook and made sure our approach produced more accurate results.

2



Oliver Stein: Determined scoring procedure and implemented weights calculation. Additionally,
implemented the testing and individual user algorithm interaction.

Table 1: Data points used by our model

Figure 1: KNN Illustration

3



Figure 2: Results of the weighting of the features

Figure 3: Questions used to determine diagnosis

References

[1] Results we are trying to recreate: https://www.kaggle.com/meesalasaidhanush/symptoms-and-COVID-
presence-99-acc

[2] https://www.researchgate.net/publication/334435471/figure/fig4/AS:780009182621696@1562980089805/Example-
of-application-of-the-weighted-k-nearest-neighbor-WKNN-algorithm-for-two.jpg

4


	Methodology
	Algorithm Choice
	Applications
	Results
	Conclusion
	Contributions

